A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides.
نویسندگان
چکیده
PURPOSE Down regulation of targeted gene by antisense oligonucleotides (ASOs) has been an effective approach for molecular therapy and the study of gene function. However, it is difficult to find optimal and effective ASOs. We describe a novel integrated strategy called full length gene targeting (FLGT), involving mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage for screening effective ASOs in full length of target gene. METHODS Initially, transcripts representing mRNA (cRNA) were hybridized with randomized oligonucleotides library, then oligonucleotides tags were sequenced, aligned to target mRNA, and found to be able to precisely define the accessible sites of the mRNA by TargetFinder softeware. Further, selected ASO probes were synthesized and used to construct microarrays. Target mRNA labeled alpha-(32)P-UTP was hybridized to the microarrays, and the substrate heteroduplexes were followed by RNase H catalytic reaction on microarrays. Those ASOs with strong signal and shorter T(1/2) (time of 50% heteroduplex cleavage by RNase H) were selected in the combinatorial assays. Survivin, an inhibitor of apoptosis, was chosen as a target to screen ASOs by the FLGT process. RESULTS Using the integrated strategy, five ASOs against survivin were selected and showed significant down regulation of survivin expression and inhibition of tumor cells growth in vitro. Furthermore, one ASO was used to further investigate its antitumor activity on Human hepatocellular carcinoma (HCC) orthotopic transplant model in mice. CONCLUSIONS This study demonstrated that FLGT is useful for screening effective ASOs. FLGT may become a useful tool for screening more effective ASOs in full length of target gene.
منابع مشابه
Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides
Antisense oligonucleotides (ASOs) have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically ...
متن کاملSequence-specific RNase H cleavage of gag mRNA from HIV-1 infected cells by an antisense oligonucleotide in vitro.
We have used a ribonuclease protection assay to investigate RNase H cleavage of HIV-1 mRNA mediated by phosphorothioate antisense oligonucleotides complementary to the gag region of the HIV-1 genome in vitro. Cell lysate experiments in H9 and U937 cells chronically infected with HIV-1 IIIB showed RNase H cleavage of unspliced gag message but no cleavage of spliced message which did not contain ...
متن کاملAntisense Oligonucleotides Capable of Promoting Specific Target mRNA Reduction via Competing RNase H1-Dependent and Independent Mechanisms
Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation. In this paper we demonstrate that cellular proteins can compete for sites targeted by RNase H1-dependent ASOs. We further show that some ASOs designed to mediate RNase H1 cleavage can, in certain instances, promote target reduction both by RNase H1-mediated cleavage and by ste...
متن کاملTargeting RNA for degradation with a (2'-5')oligoadenylate-antisense chimera.
Antisense oligonucleotides hold considerable promise both as research tools for inhibiting gene expression and as agents for the treatment of a myriad of human diseases. However, targeted destruction of RNA has been difficult to achieve in a versatile, efficient, and reliable manner. We have developed an effective strategy for cleaving unique RNA sequences with 2-5A-dependent RNase, an endoribo...
متن کاملRestoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular vision
دوره 12 شماره
صفحات -
تاریخ انتشار 2006